A Machine Learning Potential for Graphene

نویسندگان

  • Patrick Rowe
  • Gábor Csányi
  • Dario Alfè
  • Angelos Michaelides
چکیده

We present an accurate interatomic potential for graphene, constructed using the Gaussian Approximation Potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data and amongst the empirical potentials themselves the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a machine learning potential for graphene

Patrick Rowe,1 Gábor Csányi,2 Dario Alfè,3 and Angelos Michaelides1 1Thomas Young Centre, London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom 2Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom 3Thomas Young Centre, London Centre for Nanotechnology...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area

This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017